
Equations of Motion

Here we have the crankshaft at some angle θ, with two connecting rods attached to it.
As defined before, the R vector points from the main journal centerline, to the rod
journal centerline. The crankshaft rotates around O in a counterclockwise (X to Y)
direction. The C1 and C2 vectors point from the rod journal centerline to the wrist pin
centerline on the pistons. The P1 and P2 vectors point from the main journal centerline
to the wrist pin centerline on the pistons.

The lengths of the R, C1 and C2 vectors are fixed by the geometry of the actual parts.
We will define them later. The lengths of the P1 and P2 vectors vary and correspond
to the position of the wrist pin in the stroke. Since the piston is attached, it is the
piston position, as well.

The angles of the R, C1 and C2 vectors vary, according to the rotating position of the
crankshaft. The angles of the P1 and P2 vectors are fixed, because the pistons are
restrained to motion within the cylinders. The C1 and C2 vectors rotate back and forth
from the wrist pins, to follow the end of the R vector. If you’ll notice, the entire
connecting rod, moves back and forth with the piston, so it is all part of the
reciprocating mass. But we’re not going to talk about mass yet.

The angles θ, θ1, and θ2 are all referenced from the same, horizontal direction, so that
their relative values are accurately depicted in the model. The light grey lines are
drawn in to help visualize the lengths of the sin (Y) and cos (X) components of each of
the vectors. As stated earlier, the ability to look at X and Y components of the vectors
will make the analysis much easier.
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Next, notice that if you follow a path form the tail of the R vector, to the head of the C1

vector, you end up at the end of the P1 vector. Two paths to the same place. Same
with the R, C2 and P2 vectors.

So let’s call r the length of R and c the length of C1 and C2. Remember, a vector has
magnitude and direction. I am just defining lengths, independent of direction.

The P1 and P2 vectors are conveniently aligned with the X and Y axes. The length of
P1 is equal to the sum of the Y components of the R and C1 vectors. The X
components of the R and P1vectors are equal in length, but opposite in direction, so
their sum equals 0. This makes sense, since we know that the position of piston 1 is
fixed in the X direction. The same logic can be used for R, C2 and P2.

With that, we can define the equations for the positions of the connecting rods and
pistons for all rotational positions of the crankshaft by adding the X and Y components
of the vectors:

rsinθ + csinθ1 = p1

rcosθ + ccosθ1 = 0
rsinθ + ccosθ2 = 0
rcosθ + ccosθ2 = p2

So far, nothing moves. Next, we will take these position equations and find the
velocities and accelerations that describe the motion. Then we’ll be able to spin the
crankshaft, speed it up, slow it down, and everything else will follow, according to
these position rules.

You’ll recall that velocity is the rate of change of position. This can be a linear
position, or an angular position. Linear velocities will be designated with v values,
angular velocities will be designated with ω (omega) values.  You will also need to 
recall that angular velocity lags angular position by 90 degrees, as described
previously. This means that if we are taking the sin component of position, the
angular velocity will be a cos component, and the cos component will be a –sin
component. Look at the X and Y axes to gain an understanding of positive and
negative directions for sin and cos.

We also need to define the acceleration, which is the rate of change of velocity.
Linear accelerations will be given a values, angular accelerations will be given α
(alpha) values.

So here we go with the velocity and acceleration equations, based on rates of change
of the position equations:



Position (repeated):

rsinθ + csinθ1 = p1

rcosθ + ccosθ1 = 0
rsinθ + csinθ2 = 0
rcosθ + ccosθ2 = p2

Velocity (rate of change of position):

ωrcosθ + ω1ccosθ1 = v1

-ωrsinθ - ω1csinθ1 = 0
ωrcosθ + ω2ccosθ2 =0
-ωrsinθ - ω2csinθ2 = v2

When you take the time rate of change of the velocities you get accelerations. When
going from the velocity equations to the acceleration equations, we now have two time
varying terms, ω and θ for each changing angle.  This creates a couple of more terms 
in the acceleration equations. Since accelerations have been shown to lag velocities
by 90 degrees, the sin and cos change again.

Acceleration (rate of change of velocity):

αrcosθ - ω2rsinθ + α1ccosθ1 - ω1
2ccsinθ1 = a1

-αrsinθ - ω2rcosθ – α1csinθ1 – ω1
2ccosθ1 = 0

αrcosθ - ω2rsinθ + α2ccosθ2 – ω2
2csinθ2 = 0

-αrsinθ - ω2rcosθ – α2csinθ2 - ω2
2ccosθ2 = a2

Now we have the set of equations that define how the mechanism moves. Rotate the
crank, it moves the pistons. Move a piston, it will turn the crank.

I took this set of equations and wrote a computer program in MATLAB to solve them.
The programming itself is beyond the scope of this discussion, unless somebody is
really interested. It would take some explanation, if you are not familiar with matrix
algebra.

I set the crank throw to 33mm (half the stroke length of a VTR engine). I estimated
the rod length at 70mm center-center. I started the simulation with the crank angle θ at 
zero, defining the rod angles and piston positions at this known position, then ran the
simulation in 100 steps for one rotation of the crankshaft. The crank was set at a
constant rotating speed of 10,000 RPM, which is 1047 radians/second. Here are the
resulting positions, velocities and accelerations:



In the above plots, the horizontal axis is the crank angle, in degrees. The vertical axis
in the top plots are position form midstroke in mm on the right and radians on the left.
The middle plots are mm/sec and radians/sec. The lower plots are mm/sec/sec and
radians/sec/sec.

It is interesting to note the asymmetry in the velocity plot for the pistons. This is due to
the difference in the relationship between crank angle and rod angle in the top half of
the stroke vs. the bottom half. It can also be seen in the acceleration plots. The top
hump on the curve is broader and flatter than the bottom half.

It is also interesting that the piston maximum velocity does not occur at midstroke, but
slightly later. It took me a while to accept that. But after much deliberation and
rederiving the velocity equations, I am fully convinced that it is true. The pistons do not
move in simple harmonic motion, because their position is dependant on two different
time-varying angles.

Now that we have the motions defined, we can use the masses of the components to
compute the forces.


